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Abstract
The algebra and calculus of generalized differential forms are reviewed and
developed. Bases of minus one-forms are studied and used in the investigation
of groups of generalized forms and generalized connections. Different
representations of generalized forms are discussed. Physical and mathematical
applications of generalized forms are presented in a number of examples.

PACS numbers: 02.40.−K, 02.40.Hw, 03.50.−z

1. Introduction

In recent years an extension of E Cartan’s formulation of the algebra and calculus of differential
forms to what have been termed generalized differential forms has been developed. Ordinary
forms of different degrees are combined into more general objects in such a way that these
objects, the generalized forms, obey the basic algebraic and differential rules of the ordinary
exterior algebra and Cartan calculus. However, there are some differences from standard
exterior algebra and calculus, for example the analogue of the Poincaré lemma can be different.
Furthermore, the definitions allow generalized forms of negative degree. Forms of this type
were first introduced by Sparling in an attempt to construct twistor spaces for real analytic
spacetimes with Ricci-flat Lorentzian metrics. The use of negative degree forms enabled him
to overcome the standard obstacle to the construction of such spaces, at least to the extent that
he was able to construct what he termed ‘abstract twistor spaces’ [1, 2]. Subsequently there
have been interesting applications of generalized forms to various field theories, including BF
theory, Yang–Mills and gravity [3, 4]. Recently analogous ideas have been explored in the dual
context, and the notion of a generalized vector field has been introduced and studied [5]. In a
series of papers both the mathematical formalism and a variety of applications of generalized
forms to physical theories have been developed [6–9]. Here the mathematical results contained
in this series are extended and used. Generalized forms, like ordinary differential forms, can
be used as a tool in diverse areas of geometrically related physics. This paper contains new
applications in a number of different physically important contexts.
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Generalized differential forms on an n-dimensional manifold M may be described in terms
of their type, labelled by a non-negative integer N. Generalized p-forms of type N = 0 are
just ordinary p-forms. Generalized p-forms of type N = 1 may be described in terms of
ordered pairs of ordinary p- and (p + 1)-forms. A p-form of type N may be described by
an ordered multiplet of ordinary forms of degrees p to p + N . Forms of higher type may be
defined iteratively. A p-form of type N, where the integer N � 1, may be defined in terms
of an ordered pair of p- and (p + 1)-forms of type (N − 1). It follows from the definitions
that generalized forms of degree p, where n � p � −N , are permitted. Generalized forms
of all different degrees and types obey the same basic rules of exterior multiplication and
differentiation as those governing the algebra and calculus of ordinary differential forms.
However, when N > 0 there are some differences from the standard results for ordinary, that
is type N = 0, forms. For instance, as mentioned previously, the analogue of the Poincaré
lemma can be different when N is greater than zero.

In section 2 the essential aspects of the basic formalism are presented and explored
more fully than previously. Here generalized forms are expressed in terms of expansions in
bases. Type N forms are assumed to admit unique expansions in terms of ordinary forms and
negative degree forms, the latter being constructed from N linearly independent minus one-
forms. Such bases are not unique and their properties, and changes of bases, are discussed.
The multiplet description of generalized forms, mentioned above, corresponds to considering
expansions in terms of one fixed basis of negative degree forms. In previous work it has
been assumed (implicitly or explicitly) that the exterior derivatives of the basis minus one-
forms are constant ordinary zero-forms. This is a reasonable choice because the exterior
derivative of a p = −1 form must be a zero-form with vanishing derivative. A more general
initial assumption is that the exterior derivative is a nilpotent differential operator, with the
usual exterior derivative properties, and that the exterior derivatives of type N basis minus
one-forms are type N generalized zero-forms. The consequences of this assumption are
explored in detail when N is 1 and 2. It is found that the exterior derivative determines, and is
determined by, a closed differential ideal of ordinary forms. Different classes of solutions of
the differential ideal determine different exterior derivatives. It is then shown how to construct
two distinct exterior derivatives. The first exterior derivative admits bases of minus one-
forms all whose members have vanishing exterior derivative. The second exterior derivative
admits bases of minus one-forms with the property that the exterior derivative of only one
basis minus one-form is non-zero. Its value can be chosen to be one. The construction of
the first type of basis is local in contrast to the construction of the second. Such bases are
termed canonical bases. When N = 1 the second type is unique, but canonical bases are not
unique when N > 1. Throughout the paper calculations are carried out using both exterior
derivatives but the second is more interesting as far as the applications are concerned. Since
calculations are simplest when carried out using canonical bases these are always used in
subsequent sections. Section 3 is devoted to algebraic considerations. The basic formalism
of groups of matrix-valued generalized forms is presented more generally than previously.
The special orthogonal group of generalized forms and its action as a transformation group
are provided as concrete examples. Included here are the generalizations of the Lorentz
group and Lorentz transformations that arise naturally when generalized forms are used.
The calculations can be extended straightforwardly to other groups. Section 4 contains an
outline of the local properties of generalized connections and the construction of generalized
characteristic classes. Examples dealing with type N = 1 connections for metric-connection
geometries are given, and it is shown that the classical Dirac equation corresponds to the
vanishing of the covariant exterior derivative of a spinor valued generalized form. The
generalized Euler class, the generalized first Pontrjagin and the generalized second Chern



Generalized differential forms 8905

classes in four dimensions are introduced and used to construct Lagrangians for Einstein’s
vacuum field equations, with and without a cosmological constant, and for the Yang–Mills
field. The use of the generalized Euler class gives a Lagrangian which necessarily contains
both a non-zero cosmological constant and a Gauss–Bonnet term. The non-trivial role that
the latter term can play, even in four dimensions, has been investigated in recent years,
for example in [12, 13]. The calculations using generalized characteristic classes were
motivated by previous investigations of ‘generalized topological field theory’ and the use of
the generalized second Chern class to construct Lagrangians for various physically interesting
field theories [3, 4]. Finally, in an appendix, two representations of generalized forms solely
in terms of ordinary forms are exhibited. In the first, generalized forms are represented
by matrices with ordinary forms of different degrees as entries. The exterior product of
generalized forms corresponds to the matrix product, and the exterior derivative corresponds
to the derivative of these matrices by a new nilpotent differential operator. This representation
has been presented before [8], but the discussion here includes some small differences and
minor corrections. The second representation1 replaces the exterior derivative of a type N
generalized p-form on M by the ordinary exterior derivative of an ordinary (p + N)-form
on (locally) M × RN . An application of this result is made to the mathematically and
physically interesting Beltrami vector fields. These vector fields have been widely discussed
in a number of different contexts such as magnetohydrodynamics and plasma physics; various
examples are included in [14, 15]. The second representation is used to show that Beltrami
vector fields, on three-dimensional manifolds with Euclidean signature metrics, determine
symplectic structures on four-dimensional manifolds.

Details of investigations of �(N)(M) = ⊕p=n

p=−N�
p

(N)(M), the module of generalized
forms of type N, will sometimes be confined to the cases where N is less than or equal to 2.
There can be differences between the cases where N = 1 and N > 1, and these are well
illustrated by exhibiting the results for N = 1 and N = 2. Doing this will keep the notation
simple and it is easy to see what are the appropriate generalizations of the calculations and
arguments to forms of higher type. In order to make this paper reasonably self-contained a
selection of salient results from previous papers are reviewed. There are a small number of
obvious changes of notation from previous papers, but most of the conventions of [6–9] are
retained. In particular, bold-face Roman letters are again used to denote generalized forms,
including, in this paper, basis minus one-forms. Ordinary forms are again denoted by Greek
letters, and, where it is useful, the degree of a form is indicated above it. The exterior product

of any two forms, α and β, is written αβ. Any ordinary form
q
α, with q either negative or greater

than n, the dimension of the manifold, is zero. Sometimes it is helpful to indicate the type of

a generalized form by a subscript, for example by writing
p
a(N), where

p
a(N) ∈ �

p

(N)(M)—the
module of generalized p-forms of type N. When the type or degree is obvious from the context
this will not be indicated so explicitly. The forms and manifold may be real or complex.

2. Basic properties and formalism

This section is devoted to a discussion of the exterior algebra and calculus of generalized
differential forms, on a manifold M of dimension n. A generalized p-form of type N = 0
is an ordinary differential p-form. The exterior algebra of type N = 0 forms is the ordinary
exterior algebra. Any generalized p-form of type N � 1 can, by assumption, be uniquely
expressed in terms of a basis constructed from any basis of ordinary forms on M augmented by
N linearly independent minus one-forms, {mi}(i = 1, 2, . . . , N). These latter quantities are

1 Private communication from P-A Nagy.
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assigned the same algebraic properties as ordinary exterior p-forms, apart from p taking the
value minus one in standard formulae. In particular, they are assumed to satisfy the ordinary
distributive and associative laws of exterior algebra; the product rules, mimj = −mj mi and
p
αmi = (−1)pmi

p
α, where

p
α is any ordinary p-form; together with the condition of linear

independence, m1m2 . . . mN �= 0. A generalized p-form of type N � 1,
p
a(N) ∈ �

p

(N)(M), is
thus a geometrical object with a unique expansion of the form
p
a(N) = p

α +
p+1
α i1 mi1 +

1

2!

p+2
α i1i2 mi1 mi2 + · · · +

1

j !

p+j
α i1...ij mi1 . . . mij

+ · · · +
1

N !

p+N
α i1...iN mi1 . . . miN . (1)

Here
p
α,

p+1
αi1 , . . . ,

p+j
α i1...ij = p+j

α [i1...ij ], . . . ,
p+N
α i1...iN are, respectively, ordinary p-, (p + 1)-, . . . ,

(p + j)-, . . . (p + N)-ordinary forms; j ranges from 1 to N and i1, . . . ij , . . . , iN range and
sum over 1, 2, . . . , N . It then follows that generalized forms satisfy the usual distributive

and associative laws of exterior algebra, together with the product rule
p
a

q

b = (−1)pq
q

b
p
a, and

generalized exterior forms are defined for n � p � −N . With the basis of minus one-
forms fixed, generalized p-forms can be identified with ordered tuples of ordinary forms—the
approach that has been used in most previous papers. For each p = −N,−N + 1, . . . , n − 1,

n,�
p

(N)(M) is a module over the ring of function on M and �(N)(M) = ⊕p=n

p=−N�
p

(N)(M) is a
graded algebra with pointwise exterior product �

p

(N)(M) × �
q

(N)(M) → �
p+q

(N) (M) as defined
above.

In calculations it will be useful to use the fact, noted in [8], that any p-form of type N � 1
can be expressed as a of a pair generalized forms of type N − 1, that is

p
a(N) ≡ p

a(N−1) +
p+1
a (N−1)mN, (2)

where, when N > 1, each of the type (N − 1) forms can be expressed in terms of an ordered
pair of (N − 2) forms, and so on. By using this type of expression iteratively, formulae
for higher order forms can often be quickly deduced from results for type N = 1 forms. If
q

bN =
q

b(N−1) +
q+1
b (N−1)mN is a q-form of type N � 1, then the exterior product of

p
a(N) and

q

b(N) is the (p + q)-form of type N given (recursively) by

p
a(N)

q

b(N) = p
a(N−1)

q

b(N−1) + [
p
a(N−1)

q+1
b (N−1) + (−1)q

p+1
a (N−1)

q

b(N−1)]mN. (3)

A general change of basis minus one-forms, mi �→ m̃i , is of the form

m̃i = (�−1)ij mj +
1

2!

1

ϒi
i1i2 mi1 mi2 + · · · +

1

N !

N−1

ϒi
i1i2...iN mi1 mi2 . . . miN . (4)

Linear independence of the new basis minus one-forms implies that �, the determinant of the
N × N matrix-valued function with entries the zero-forms �i

j , must be non-zero, justifying
the notation.

Example 2.1. Consider the case where N = 2. Corresponding conclusions for N = 1 forms
can be read off from the results for N = 2 forms. Let

p
a = p

α +
p+1
α imi +

p+2
α m1m2, (5)

where the indices i, j range and sum over 1–2.
The most general change of basis of the minus one-forms (m1, m2) �→ (m̃1, m̃2) is of the

form

m̃i = (�−1)ij mj + ϒim1m2, (6)
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with inverse transformation given by

mi = �i
j m̃j − ��i

jϒ
j m̃1m̃2. (7)

The basis transformations, acting on the right here, form a group with the composition of
transformations given by

(�2, ϒ2) ◦ (�1, ϒ1) = (
�1�2,�

−1
2 ϒ1 + �−1

1 ϒ2
)
.

If the representation of the generalized p-form
p
a in this new basis is given by

p
a =

p

α̃ +
p+1
α̃ im̃i +

p+2
α̃ m̃1m̃2, (8)

then it follows that
p

α̃ = p
α,

p+1
α̃ i = �

j

i

p+1
αj , (9)

p+2
α̃ = �

[p+2
α − �

j

i

p+1
αjϒ

i
]
.

Consider now the exterior calculus of generalized forms. It is assumed that exterior derivative
operators d : �

p

(N) → �
p+1
(N) agree with the usual exterior derivative when they act on type

N = 0 (ordinary) forms and satisfies the usual exterior derivative rules, that is for type N � 0
forms

d(
p
a +

p

b) = d
p
a + d

p

b, dϕ(X) = X(ϕ),
(10)

d(
p
a

q

b) = (d
p
a)

q

b + (−1)p
p
a d

q

b, d2p
a = 0,

where X is any vector field and ϕ any function on M. Since the exterior derivative of each
basis minus one-form must be a generalized zero-form, it follows then that there are ordinary
zero-, one-, two-, . . . , N-forms, respectively µi, νi

i1
, ρi

i1i2
, . . . , ιii1...iN

., such that

dmi = µi − νi
i1

mi1 +
1

2!
ρi

i1i2
mi1 mi2 + · · · +

1

N !
ιii1...iN

mi1 mi2 . . . miN . (11)

The ordinary forms in this expression are restricted by the requirements above, in particular
d2mi = 0. These lead to a differential ideal composed of the ordinary forms, each solution
of which determines an exterior derivative. The next example illustrates this. Type N = 2
forms are considered and such a differential ideal is constructed explicitly. Its solutions, and
the corresponding exterior derivatives which they define, are then investigated.

Example 2.2. Let N = 2 and let a basis of two minus one-forms and an exterior derivative be
given for which

dmi = µi − νi
j mj + ρim1m2, (12)

where µi, νi
j and ρi are respectively ordinary zero-, one- and two-forms. Applying the rules

of exterior algebra and calculus, as above, in particular, d2mi = 0, it follows that


i ≡ dµi + µjνi
j = 0,

�i
j ≡ dνi

j + νi
kν

k
j − ρiµj = 0, (13)

�i ≡ dρi + νi
jρ

j − ρiν
j

j = 0.

The differential ideal determined by 
i,�i
j ,�

i is closed. Here and in the following the skew
symmetric matrices εij and εij , where ε12 = ε12 = 1, are used to raise and lower the Latin
indices, so that µiεij = µj .
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Conversely any set of ordinary differential forms µi, νi
j , ρ

i satisfying equation (13)
determines an exterior derivative, via equation (12), satisfying equation (10). Such ordinary
forms determine the exterior derivative of a generalized p-form to be

d
p
a = d

p
α + (−1)p+1p+1

α iµ
i +

[
d

p+1
α i − ν

j

i

p+1
α j + (−1)pµi

p+2
α

]
mi

+
[
d

p+2
α − νi

i

p+2
α + (−1)p+1ρip+1

α i

]
m1m2. (14)

Under a change of basis given by equation (6) it follows that

dm̃i = µ̃i − ν̃i
j m̃j + ρ̃im̃1m̃2, (15)

where

µ̃i = (�−1)ijµ
j ,

ν̃i
j = (�−1)ik d�k

j + (�−1)ikν
k
l �

l
j + µk�

k
jϒ

i,

ρ̃i = �
{
(�−1)ij ρ

j + dϒi + ϒiν
j

j +
[
(�−1)ik d�k

j + (�−1)ikν
k
l �

l
j

]
ϒj + µk�

k
jϒ

iϒj
}
,

(16)

and


̃i ≡ dµ̃i + µ̃j ν̃i
j = (�−1)ij


j ,

�̃i
j ≡ d̃νi

j + ν̃i
k ν̃

k
j − ρ̃i µ̃j = (�−1)ik�

k
l �

l
j − ϒi
k�

k
j , (17)

�̃i ≡ dρ̃i + ν̃i
j ρ̃

j − ρ̃i ν̃
j

j = �
[
(�−1)ij�

j + �k
j
kϒ

iϒj + (�−1)ik�
k
l �

l
jϒ

j − ϒi�
j

j

]
.

It follows from equations (12)–(17), and the change of basis equations, that it is possible to
construct bases of minus one-forms m̃i with simple ‘canonical’ exterior derivatives. There
are two distinct cases where such bases can be constructed in a straightforward way from
the above equations. When the dimension of the manifold M is less than 3 the following
calculations can be simplified but the results are the same.

Case (i). Consider exterior derivatives with µi = 0 in a contractible domain U ⊆ M . Then a
new (canonical) basis can be chosen in U so that dm̃i = 0.

This follows from the observation that when µi = 0 the solutions of equation (13) can be
written in the form

νi
j = (λ−1)ik dλk

j , ρi = (det λ)(λ−1)ij dζ j , (18)

where det λ is the determinant of the invertible matrix with entries λi
j , and ζ i are one-forms.

Then it follows from equation (16) that a canonical basis m̃i , satisfying dm̃i = 0, is given by
equation (6) with �i

j = (λ−1)ij , and ϒi = −(det λ)ζ i .
Such a canonical basis is not unique. If m̃i = (m̃1, m̃2) is a basis satisfying dm̃i = 0,

then so is any basis m̂i = (m̂1, m̂2), where

m̂i = (�̃−1)ij m̃j + ϒ̃ im̃1m̃2, d�̃i
j = dϒ̃ i = 0. (19)

Case (ii). Consider exterior derivatives with µi non-zero in a (not necessarily contractible)
domain U ⊆ M . In this case, by introducing σ i

j ≡ ρiµj , the differential ideal given by
equation (13) can be re-written as


i = dµi + µjνi
j = 0,

�i
j = dνi

j + νi
kν

k
j − σ i

j = 0,

µj�
i + 
jρ

i = dσ i
j + νi

kσ
k
j − νk

j σ
i
k = −[

d�i
j + νi

k�
k
j − νk

j �
i
k

] = 0.

(20)



Generalized differential forms 8909

Consequently when the second equation is satisfied so is the third. In fact with this notation
the second equation has the form of the Cartan equation relating a connection and its curvature
and the third equation has the form of the corresponding Bianchi identity.

In this case a new (canonical) basis can be chosen so that dm̃i = δi
1 in U . To see this

first assume, without loss of generality, that µ1 is non-zero. Then it follows directly from
equation (16) that �i

j , as in equation (6), can be chosen so that µ̃i = δi
1. With such a choice,

and the choice ϒi = −�−1
[
(�−1)ik d�k

2 + (�−1)ikν
k
l �

l
2

]
, it follows from equations (16) and

(20), together with the transformed version of equation (20), that ν̃i
j = 0, ρ̃i = 0 and therefore

dm̃i = δi
1.

This canonical basis is not unique. If m̃i = (m̃1, m̃2) is a basis satisfying dm̃i = δi
1, then

so are the bases (m̂1, m̂2), where

m̂1 = m̃1 + d(πm̃1m̃2), m̂2 = d(τm̃1m̃2), (21)

where π and τ are functions and τ is non-zero. Such mappings of canonical bases into

canonical bases form a group, and if
p
a =

p

α̃ +
p+1
α̃ im̃i +

p+2
α̃ m̃1m̃2 =

p

α̂ +
p+1
α̂ im̂i +

p+2
α̂ m̂1m̂2, then

p

α̃ =
p

α̂,
p+1
α̃ 1 =

p+1
α̂ 1,

p+1
α̃ 2 = τ

p+1
α̂ 2 + π

p+1
α̂ 1 (22)

p+2
α̃ = τ

p+2
α̂ +

p+1
α̂ 1 dπ +

p+1
α̂ 2 dτ.

In the canonical bases the two exterior derivatives of a type N = 2 generalized p-form
are given by

d
p
a = d

p
α + (−1)p+1ε

p+1
α 1 + d

p+1
α 1m1 +

[
d

p+1
α 2 + (−1)pε

p+2
α

]
m2 + d

p+2
α m1m2, (23)

where ε = 0 in case (i) and ε = 1 in case (ii). Then
p
a is closed if and only if

d
p
α + (−1)p+1ε

p+1
α 1 = 0,

d
p+1
α 1 = 0,

d
p+1
α 2 + (−1)pε

p+2
α = 0,

d
p+2
α = 0.

(24)

Hence in case (i), where ε = 0,
p
a is closed if and only if all the ordinary forms defining it are

closed. On the other hand, in case (ii), where ε = 1,
p
a is closed if and only if it is exact. In

this case
p
a = p

α + (−1)p d
p
αm1 +

p+1
α 2m2 + (−1)p+1d

p+1
α2 m1m2

= d[(−1)p
p
αm1 + (−1)p+1p+1

α2 m1m2], (25)

if and only if d
p
a = 0. It can be seen from equations (25) that, in case (ii), an ordinary closed

form is always exact when viewed as a N � 1 form.
Conclusions in the two corresponding cases for type N = 1 forms can be read off from

these results. In case (i) a canonical minus one-form m which satisfies dm = 0 can always
be constructed in a contractible region. It is not unique, if m is such a canonical minus
one-form so is �−1m, where � is any non-zero constant. In case (ii) a canonical minus one-
form m which satisfies dm = 1 can always be constructed and this one-form is unique. One
consequence of this is that, in this case, the definitions of Lie derivative, duality, co-differential
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and Laplacian for generalized forms, on manifolds with metrics, made in previous papers
[7, 8] are uniquely defined relative to the canonical basis. This contrasts with the situation in
case (i) or whenever N > 1, where those definitions are dependent on the choice of canonical
basis. The method of calculation used in this example can be applied when N is greater than 2
but the computations become increasingly lengthy. A more efficient calculation for general N
would be much more satisfactory, even though it might not give results that are qualitatively
different from the N = 2 case.

Henceforth in this paper two exterior derivatives will be carried along together and used
in calculations for all N > 1. The two derivatives are those which admit canonical bases of
minus one-forms, that is bases for which

dmi = εδi
1, (26)

where ε = 0 in the first case and ε = 1 in the second case. Consequently for a type N � 1
form given by equation (2), the exterior derivatives considered are given by

d
p
a(N) = d

p
a(N−1) + (1)p+1εδN

1

p+1
a (N−1) + d

p+1
a (N−1)mN . (27)

In previous papers it was assumed, implicitly or explicitly, that the exterior derivative was such
that a basis existed for which the only non vanishing ordinary forms in equation (11) were
the zero-forms µi and that these were non-zero constants. When this is the case it is always
possible to transform to a new basis of minus one-forms satisfying dmi = δi

1, i = 1, . . . , N .
Therefore, in the terminology being used in this paper, the second type of exterior derivative
and canonical basis was being used in earlier work.

Finally in this section it should be noted that analytic functions can be extended naturally,
by using their power series expansions, to define functions of generalized zero-forms.

Example 2.3. Let f be an analytic function of r real variables and let aµ = αµ + βµm, µ =
1 . . . r , be r type N = 1 generalized zero-forms. Then, by using the Maclaurin expansion for
f the generalized zero-form f(aµ) can be computed to be

f(aµ) = f (αµ) +
∂f (αµ)

∂αν
βνm. (28)

3. Lie groups and matrix-valued generalized forms

In this section a fuller discussion of groups of matrix-valued generalized forms than has been
given in previous papers, such as [8], will be presented. It will always be assumed that matrix
representations of groups, on a vector space, are being used which make the matrix operations
in the calculations well defined; in particular, the identity will be the appropriate unit matrix.
This approach means that obvious homomorphisms and isomorphisms need not be stated
explicitly all the time.

First recall the general case of groups of type N = 1 generalized forms. For simplicity
the starting point is taken to be a matrix Lie group. Let G be a matrix Lie group and let

H an (additive) abelian Lie group. Let G(0) = {0
g(0)} be the space of G-valued zero-forms

belonging to �0
(0)(M). This is a group under multiplication with identity written 1(0). Let

H(0) = {1
g(0)} be the additive abelian group of H-valued one-forms ∈ �1

(0)(M). Let there
be an ad-action of G(0) on H(0), that is a homomorphism � : G(0) → aut (H(o)) with

�(
0
g(0)) :

1
g(0) −→ 0

g(0)

1
g(0)(

0
g(0))

−1. Then the set of type N = 1 matrix-valued generalized

zero-forms, G(1) = {0
g(1)}, where

0
g(1) = (1(0) +

1
g(0)m)

0
g(0) (29)
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is a group under exterior multiplication. If
0
f(1) = (1(0) +

1
f(0)m)

0
f(0) ∈ G(1) the product is

0
g(1)

0
f(1) = (1(0) + [

1
g(0) +

0
g(0)

1
f(0)(

0
g(0))

−1]m)
0
g(0)

0
f(0), (30)

and the inverse, with identity 1(1) = 1(0), is given by

(
0
g(1))

−1 = (1(0) − [(
0
g(0))

−1 1
g(0)

0
g(0)]m)(

0
g(0))

−1. (31)

The group G(1) is isomorphic to the semi-direct product of G(0) and H(0). The Lie algebra g(1)

of G(1) is given by {
0
l(1)}, where

0
l(1) = 0

λ +
1
λm and

0
λ and

1
λ respectively take values in the Lie

algebras of G and H.

Lie groups of generalized zero-forms of type N > 1 can be constructed iteratively (cf

equation (2)) from the N = 1 case as follows. Let G(N−1) = {0
g(N−1)}, N > 1, be a Lie group

of type (N − 1) generalized zero-forms, and let H(N−1) = {1
g(N−1)} be an additive abelian Lie

group of type (N − 1) generalized one-forms where there is an ad-action, as above, of G(N−1)

on H(N−1). Then G(N) = {0
g(N)}, where

0
g(N) = (1(N−1) +

1
g(N−1)m

N)
0
g(N−1) (32)

is a Lie group of type N forms. The product rule and inverses are given by the same formulae
as in equations (30) and (31) with the subscripts (1) and (0) respectively replaced by (N) and
(N − 1). In the applications in this paper it will always be the case that H(N) is isomorphic to
the Lie algebra g of G, regarded as an additive abelian group.

Example 3.1. Consider G(2) = {0
g(2)}, where

0
g(2) = (1(1)+

1
g(1)m

2)
0
g(1),

0
g(1) = (1+

1
γ 1m1)

0
γ and

1
g(1) = 1

γ 2 +
2
γ m1. Here

0
γ is an ordinary G-valued zero form belonging to G(0), and

1
γ 1,

1
γ 2,

2
γ

are, respectively, ordinary H-valued one-forms and two-forms. Furthermore, G(1) = {0
g(1)}

and H(1) = {1
g(1)} and G(1) acts on H(1) by

1
g(1) → 0

g(1)

1
g(1)(

0
g(1))

−1. Written out more fully,
with the identity written as 1,

0
g(2) = [1 +

1
γ1m1 +

1
γ2m2 + (

2
γ +

1
γ2

1
γ 1)m

1m2]
0
γ ,

(
0
g(2))

−1 = [1 − (
0
γ )−1 1

γ 1
0
γ m1 − (

0
γ )−1 1

γ 2
0
γ m2 − (

0
γ )−1(

2
γ +

1
γ 1

1
γ 2)

0
γ m1m2](

0
γ )−1;

(33)

0
g(1)

1
g(1)(

0
g(1))

−1 = 0
γ

1
γ 2(

0
γ )−1 + {( 0

γ
2
γ (

0
γ )−1 − [

1
γ 1

0
γ

1
γ 2(

0
γ )−1 +

0
γ

1
γ 2(

0
γ )−1 1

γ 1]}m1. (34)

Note that, in equation (34), { 1
γ 1[

0
γ

1
γ 2(

0
γ )−1] + [

0
γ

1
γ 2(

0
γ )−1]

1
γ 1} must be an H-valued two-form

as is the case in the applications, where H is always a Lie-algebra regarded also as an additive
abelian group.

Under a change of canonical basis, m1 = m̃1 + πm̃2 + dπ m̃1m̃2, and m2 = τm̃2 +

dτ m̃1m̃2 as in equation (21), it follows that (
0
γ ,

1
γ 1,

1
γ 2,

2
γ ) → (

0
γ̃ ,

1
γ̃ 1,

1
γ̃ 2,

2
γ̃ ) where

0
γ̃ = 0

γ ,
1
γ̃1 = 1

γ 1,
1
γ̃2 = π

1
γ 1 + τ

1
γ 2,

2
γ̃ = τ

2
γ − π

1
γ 1

1
γ 1 +

1
γ 1 dπ +

1
γ 2 dτ.

(35)

Example 3.2. Let V be a real vector space of dimension s = p + q equipped with a metric η

of signature (p, q). First consider matrix-valued generalized forms which preserve the metric,
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that is forms
0
g(N) = (1(N−1) +

1
g(N−1)m

N)
0
g(N−1), with matrix entries belonging to �0

(N)(V ),
which satisfy

0
g

T

(N)η
0
g(N) = η, (36)

where for each N the metric is considered to be a matrix-valued type N zero-form (by
a small abuse of notation written η) and the superscript T denotes the matrix transpose,
0
g

T

(N) = 0
g

T

(N−1) +
0
g

T

(N−1)

1
g

T

(N−1)m
N . This condition holds if and only if

0
g

T

(N−1)η
0
g(N−1) = η,

1
g

T

(N−1)η + η
1
g(N−1) = 0. (37)

If
0
X(N) and

0
Y(N) are vector-valued generalized zero-forms, the bilinear form

0
X

T

(N)η
0
Y(N) is

preserved under the transformations
0
X(N) �→ 0

g(N)

0
X(N),

0
Y(N) �→ 0

g(N)

0
Y(N).

Example 3.3. In the case of type N = 1 generalized forms,
0
g(1) = (1(0) +

1
g(0)m

1)
0
g(0), written

here as
0
g(1) = (1 +

1
γ )m

0
γ , the metric preserving conditions given by equations (36) and (37)

hold if and only if

0
γ

T

η
0
γ = η,

1
γ

T

η +
1
γ η = 0, (38)

that is if and only if the matrix
0
γ takes values in SO(p, q) and the matrix-valued one-forms

1
γ

take values in so(p, q), the Lie algebra of SO(p, q).

If
0
X(1) = 0

ξ +
1
ξm and

0
Y(1) = 0

ς +
1
ςm, where

0
ξ,

1
ξ,

0
ς and

1
ς are vector-valued ordinary

forms, then

0
X

T

(1)η
0
Y(1) = 0

ξ

T

η
0
ς + (

0
ξ

T

η
1
ς +

1
ξ

T

η
0
ς)m. (39)

Under the transformations
0
X(1) �→ 0

g(1)

0
X(1),

0
Y(1) �→ 0

g(1)

0
Y(1)

0
ξ �→ 0

γ
0
ξ and

1
ξ �→ 0

γ
1
ξ +

1
γ

0
γ

0
ξ, (40)

and similarly for
0
ς and

1
ς . Since

0
X

T

(1)η
0
Y(1) is preserved under these transformations so are

both
0
ξ

T

η
0
ς and (

0
ξ

T

η
1
ς +

1
ξ

T

η
0
ς). The first transformation in equation (40) is the usual SO(p, q)

transformation, but the second is a generalization of the usual transformation induced on
vector valued one-forms. Hence, when p = 1 and q = 3, the groups and transformations are
generalizations of the usual Minkowski spacetime Lorentz group and Lorentz transformations.

These results can be easily extended to forms of higher type. When equation (32) is

used, repeatedly, to express type N > 2 forms,
0
g(N), in terms of their expansions in ordinary

forms and the basis minus one-forms it is a straightforward matter to see that the degree zero
ordinary form is SO(p, q)-valued and the higher degree ordinary forms are so(p, q)-valued.

For example, when N = 2 and
0
g(2) is expanded in the form given by equation (33),

0
γ is

SO(p, q)-valued and
1
γ 1,

1
γ 2,

2
γ are each so(p, q)-valued.

It is clear that these results extend straightforwardly to the case where G is a symplectic
or unitary group. Again in these cases H is the corresponding Lie algebra. The formalism also
extends in the obvious way to other groups such ISO(p, q) and to affine, conformal, projective
and other transformations.
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4. Local generalized connections

The local theory of type N generalized connections, with values in the Lie algebra g of a
matrix Lie group G, will be discussed and some examples will be given. Here H = g

and the connection one-forms, A(N), are g-valued type N generalized one-forms. It will be
assumed that matrix representations are being used so that the generalized connections (and
their constituent ordinary forms) are square matrix-valued. The curvature two-form is defined
by the standard formula

F(N) = dA(N) + A(N)A(N), (41)

where, as usual, the last term includes both the matrix and the exterior product. It is convenient
to introduce a differential operator D(N), the covariant exterior derivative defined by A(N).
The covariant exterior derivative of a type N generalized square matrix-valued p-form P(N) is
defined to be

D(N)P(N) = dP(N) + A(N)P(N) + (−1)p+1P(N)A(N). (42)

As in previous sections, formulae for type N � 1 forms can often be conveniently constructed,
iteratively, from formulae for forms of lower type. Writing

A(N) =
1
A(N−1) +

2
A(N−1)mN, (43)

it follows that

F(N) =
2
F(N−1) +

2
εA(N−1)δ

N
1 + D(N−1)

2
A(N−1)mN . (44)

The generalized connection is flat when F(N) = 0. The generalized connection A(N) =
(

0
g(N))

−1 d
0
g(N), where

0
g(N) is a G(N)-valued function, is flat. Under a ‘generalized gauge

transformation’

A(N) → (
0
g(N))

−1 d
0
g(N) + (

0
g(N))

−1A(N)

0
g(N), (45)

the curvature transforms in the usual way

F(N) → (
0
g(N))

−1F(N)

0
g(N), (46)

and the condition of flatness is preserved. These generalized gauge transformations also
preserve the generalized versions of various characteristic classes, for instance the generalized
second Chern class which is defined by

2C(N) = 1

8π2
[Tr(F(N)F(N)) − Tr(F(N)) Tr(F(N))], (47)

and is equal to the exterior derivative of the generalized Chern–Simons three-form CSC(N)

where

CSC(N) = 1

8π2

[
Tr

(
A(N)F(N) − 1

3
A(N)A(N)A(N) − A(N) dA(N)

)]
. (48)

The definitions of the second Chern class and Chern–Simons three-form presented here are
formal analogues of the usual definition in terms of ordinary forms. They were introduced and
used in [3, 4] using type N = 1 connections and curvatures. Other generalized characteristic
classes, such as the Pontrjagin classes, can also be constructed by replacing ordinary forms
with generalized forms in the usual definitions. In an example below the generalized Euler
class in four dimensions will introduced and used.
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Next examples which exhibit various features of generalized connections will be exhibited.
It suffices to discuss type N = 1 connections here. Many further examples, including type
N = 2 connections, are given in [6, 9] and also in [3, 4].

Example 4.1. Let a type N = 1 connection, A = 1
α +

2
αm, be flat so that d

1
α +

1
α

1
α + ε

2
α = 0

and D
2
α = 0, where D is the covariant exterior derivative with respect to

1
α.

Then in case (i) where ε = 0, it is a straightforward matter to show that on a contractible
neighbourhood U there exist ordinary G-valued zero- and g-valued one-forms µ and ν such

that A = µ−1 dµ + µ−1(dν)µm. Furthermore, A = (
0
h)−1 d

0
h where

0
h = (1 + νm)µ. More

generally, A = (
0
g

0
h)−1d(

0
g

0
h) for any closed zero-form

0
g in G(1). When ε = 0 such a closed

form can always be written as
0
g = [1 + βm]γ for some constant G-valued zero-form γ and

closed g-valued one-form β.

In case (ii) where ε = 1, the flat connection is always of the form A = 1
α − (d

1
α +

1
α

1
α)m,

and A = (
0
h)−1 d

0
h where

0
h = 1 − 1

αm. More generally A = (
0
g

0
h)−1d(

0
g

0
h) for any closed zero-

form
0
g in G(1). When ε = 1 such a closed form can always be written as

0
g = [1+(dγ )γ −1m]γ

for some G-valued zero-form γ.

In the next example the case where G = ISO(p, q) and affine generalized connections
are considered. In particular it is shown how to recover the Cartan structure equations for a
metric from a flat generalized connection. This is an extension and re-formulation of an earlier
calculation in [6].

Example 4.2. On an open subset of an n-dimensional manifold M an element of the group
ISO(p, q)(1) can be represented by (n + 1) × (n + 1) matrix-valued type N = 1 generalized
zero-form,

0
g(1) =

(
ga

b ga

0 1

)
. (49)

Here the Latin indices range and sum over 1 . . . n and the N = 1 generalized zero-forms ga
b

are the (a, b) entries in an n × n representation of SO(p, q)(1). The type N = 1 generalized
affine connections are represented by (n + 1, n + 1) matrix valued generalized one-forms

A(1) =
(

Aa
b Aa

0 0

)
, (50)

with values in the Lie algebra of ISO(p, q)(1). When Aa
b = ωa

b − �a
bm and Aa = θa − 
am

the curvature of A(1) is given by

F(1) =
(

Fa
b Fa

0 0

)
, (51)

where

Fa
b = dωa

b + ωa
cω

c
b − ε�a

b − D�a
bm,

Fa = Dθa − ε
a +
(
�a

bθ
b − D
a

)
m,

and D is the covariant exterior derivative with respect to ωa
b .

When ε = 0 the generalized connection is flat if and only if

dωa
b + ωa

cω
c
b = 0, Dθa = 0,

D�a
b = 0, �a

bθ
b − D
a = 0.

(52)
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If the n ordinary one-forms θa are linearly independent so that they can form an orthonormal
basis for a metric of signature (p, q), ds2 = ηabθ

a⊗θb, then this metric, with metric connection
ωa

b , is flat. Locally θa = (γ −1)ab dxb and ωa
b = (γ −1)ac dγ c

b , where γ c
a γ d

b ηcd = ηab. It then
follows from the other flatness conditions that there are so(p, q)-valued one-forms µa

b and

one-forms νa such that �a
b = (γ −1)ac

(
dµc

d

)
γ d

b and 
a = (
γ a

c

)−1[
µc

b dxb + dνc
]
. Hence, when

ε = 0, the flat connection one-form A(1) is locally given in this gauge by

A(1) =
(

(γ −1)ac dγ c
b (γ −1)ab dxb

0 0

)
−

(
(γ −1)ac

(
dµc

d

)
γ d

b

(
γ a

c

)−1[
µc

b dxb + dνc
]

0 0

)
m. (53)

When ε = 1 the generalized connection is flat if and only if

dωa
b + ωa

cω
c
b − �a

b = 0, Dθa − 
a = 0. (54)

Then A(1) = (
0
g

0
h)−1d(

0
g

0
h) where, directly from example 4.1,

0
g is any closed zero-form in

IS(p, q)(1), and

0
h =

(
δa
b − ωa

bm −θam

0 1

)
. (55)

When the one-forms θa are linearly independent, so that they can form an orthonormal basis for
the metric ηabθ

a ⊗θb, equation (54) are the Cartan structure equations for the SO(p, q) metric.
The metric connection ωa

b has torsion 
a and curvature �a
b. The equations, �a

bθ
b − D
a = 0

and D�a
b = 0, which must also hold when the connection is flat are just the Bianchi identities.

It should be noted that the Cartan structure equations, and Einstein’s gravitational field
equations can also be expressed as the flatness of type SO(p, q)(2) connections [9].

In four dimensions the Cartan structure equations for a metric connection can also be
obtained from another flat connection by using spinor representations. In the next example a
brief outline of the Lorentzian case will be given, using the two component spinor conventions
and notation of [10, 11].

Example 4.3. Consider a four-dimensional manifold M and a generalized connection
represented by a complex 4 × 4 matrix-valued generalized one-form

A =
(

AA
B AA

B ′

0 AA′
B ′

)
=

(
ωA

B − �A
Bm θA

B ′ − 
A
B ′m

0 ωA′
B ′ − �A′

B ′m

)
, (56)

where θA
B ′ , ω

A
B, ωA′

B ′ and 
A
B ′ ,�

A
B,�A′

B ′ are respectively one-forms and two-forms. Let ωA
B,�A

B

take values in the Lie algebra sl(2, C) and let ωA′
B ′ ,�

A′
B ′ be their complex conjugates. The

operator D, whenever it is used, is the relevant covariant exterior derivative with respect to ωA
B

and ωA′
B ′ . The curvature F = dA + AA is equal to(

�
A
B − ε�A

B − D�A
Bm, DθA

B ′ − ε
A
B ′ +

(
�A

CθC
B ′ − θA

C ′�
C ′
B ′ − D
A

B ′
)
m

0 �
A′
B ′ − ε�A′

B ′ − D�A′
B ′m

)
, (57)

where �
A
B = dωA

B + ωA
CωC

B and �
A′
B ′ = dωA′

B ′ + ωA′
C ′ω

C ′
B ′ . Henceforth in this example let ε = 1.

Consider the case where the one-forms θAA′
form a null co-frame for a Lorentzian metric,

εABεA′B ′θAA′ ⊗ θBB ′
. Then the generalized curvature F is zero if and only if the Cartan structure

equations for the metric are satisfied, with metric connection ωa
b ↔ (

ωA
BδA′

B ′ + ωA′
B ′δ

A
B

)
. The

torsion of this connection is 
a ↔ 
AA′
and its curvature two-form �a

b ↔ (
�A

BδA′
B ′ + �A′

B ′δ
A
B

)
.

Now let

V =
(

VA

VA′

)
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be a generalized 4 × 1 matrix-valued p-form. Its covariant exterior derivative, with respect to
A, is

DV = (dV + AV)

=
(

dVA + AA
BVB + AA

B ′VB ′

dVA′
+ AA′

B ′VB ′

)
≡

(
DVA

DVA′

)
. (58)

When VA = αA + βAm and VA′ = ξA′
+ ζA′

m, where αA, ξA′ and βA, ζA′ are respectively
spinor-valued ordinary p-forms and (p + 1)-forms

DVA = DαA + θA
B ′ξ

B ′
+ (−1)p+1βA

+
[
DβA + θA

B ′ζ
B ′

+ (−1)p+1
A
B ′ξ

B ′
+ (−1)p+1�A

BαB
]
m, (59)

DVA′ = DξA′
+ (−1)p+1ζA′

+
[
DζA′

+ (−1)p+1�A′
B ′ξ

B ′]
m.

Now consider the case where the generalized curvature two-form F is zero and where V is the
generalized three-form obtained by choosing

αA = ρA′ηAA′
, βA = (2 − µ)σAυ,

ξA′ = σAηAA′
, ζA′ = −µρA′

υ.
(60)

Here µ is a real constant, υ is the non-zero volume four-form and ηAA′ = i
3θAB ′

θBA′
θBB ′ is

the basis of three-forms dual to θAA′
. Then

DV =
(

DAA′
ρA′ − µσA + ρA′

[

.A′AB

B + 
A.A′B ′
B ′

]
DAA′

σA − µρA′
+ σA

[

.A′AB

B + 
A.A′B ′
B ′

] )
υ, (61)

where DAA′ denotes the covariant derivative determined by the metric connection and the
torsion has been expanded in terms of its components as


AA′ = 1
2

(

AA′BCθBC ′θC ′

C + 
AA′B ′C ′
θB ′CθC

C ′
)
. (62)

The complex conjugate components 
AA′BC and 
AA′B ′C ′
are symmetric in their last two

indices. The vanishing of the covariant exterior derivative gives a generalization of the Dirac
equation. When the torsion is zero the covariant derivative is determined by the Levi-Civita
(spin) connection and the equation DV = 0 holds if and only if the four spinor zero-form
ψ = (σA, ρA′) satisfies the classical Dirac equation

DAA′
ρA′ = µσA; DAA′

σA = µρA′
. (63)

Similar results hold for split and Euclidean signature metrics. It is straightforward to see
how to write down the associated gauge groups by appropriately modifying the discussion of
ISO(p, q)(1) in the previous example.

The next example illustrates the use of type N = 1 forms in four dimensions, and
the generalized Euler class, to construct a Lagrangian which has the Einstein vacuum field
equations with non-zero cosmological constant as Euler–Lagrange equations. The idea of
using generalized characteristic classes to construct Lagrangians was introduced in [3, 4]
where Lagrangians for various field theories, including Einstein’s vacuum field equations
with a non-zero cosmological constant and Yang–Mills fields, were constructed by using the
generalized second Chern class. The type of notation employed in example 4.2 will be used
again.

Example 4.4. The generalized Euler class in four dimensions is defined, by analogy with the
standard definition, to be

E(N) = 1

32π2
εabcdFab

(N)F
cd
(N), (64)
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where the Latin indices sum and range over 1 to 4, εabcd is the totally anti-symmetric Levi-
Civita symbol, and Fab

(N) is the generalized curvature of a type N generalized connection with
G = SO(r, s) and r + s = 4. This is also invariant under generalized gauge transformations.
In four dimensions only the first two terms in the expansion of the expression for the connection
contribute to E(N) and 2C(N). In this sense, E(N) = E(1) and 2C(N) =2 C(1) for all N � 1.
Therefore here only type N = 1 connections Aa

b , with generalized curvature two-form Fa
b ,

will be used. In the remainder of this example, and the next, the choice dm = 1 will be made.
Choosing

Aa
b = ωa

b + kθaθbm, (65)

where k is a non-zero constant, it follows that

Fa
b = �a

b + kθaθb + kD(θaθb)m. (66)

When Fa
b = 0 the metric ηabθ

a ⊗ θb has a torsion free metric connection ωa
b with constant

Riemannian curvature. The generalized Euler class is given by

E(1) = E(0) + L,

L = k

16π2

(
εabcd�

abθcθd +
k

2
εabcdθ

aθbθcθd

)
.

(67)

Here E(0) is the ordinary Euler class, E(0) = 1
32π2 (εabcd�

ab�cd). Consequently E(1) is in
fact an ordinary four-form, the sum of the topological term E(0) and the term L. The latter is
essentially the usual first order Lagrangian four-form for Einstein’s vacuum equations with
non-zero cosmological constant. This result suggests that E(1) is a natural Lagrangian four-
form for four-dimensional gravity when the cosmological constant is assumed to be non-zero.
Examples of recent investigations employing Lagrangians in four dimensions which include
a cosmological constant and a Gauss–Bonnet term can be found in [12, 13].

Example 4.5. In four dimensions, the generalized second Chern class, 2C(1) ≡ C, and
generalized first Pontrjagin class, 1P(1) ≡ P, corresponding to a type N = 1 (zero trace)
generalized connection A = α + βm, with curvature F = � + β + Dβm, have the form

κ

8π2
Tr(� + β)2 = κ

8π2
Tr(�� + 2�β + ββ), (68)

where � = dα + αα, and κ = 1 for C and κ = −1 for P. When α and β are respectively
given by the so(r, s)-valued forms ωa

b and
(
aθaθb + b

2εa
bcdθ

cθd
)
, where a and b are constants

and r + s = 4, the generalized first Pontrjagin class takes the form

P = − 1

8π2

(
�a

b�
b
a + 2a�a

bθ
bθa + b�a

bε
b
acdθ

cθd − abεabcdθ
aθbθcθd

)
. (69)

The first term in this ordinary four-form is the ordinary first Pontrjagin class, 1P(o),
corresponding to the connection one-form α. Altogether P, with appropriate choices of a
and non-zero b, is also a first order Lagrangian four-form for Einstein’s vacuum equations. It
includes the topological term 1P(0) and the choice a = 0 corresponds to the zero cosmological
constant case.

Finally it should noted that when a fixed metric with signature (r, s) is assumed given on
a four-dimensional manifold M, and the two-form β is chosen to be β = a� + b ∗ �, where ∗
denotes the Hodge dual, then the generalized second Chern class is the ordinary four-form

C = 1

8π2
{[(1 + a)2 + (−1)rb2] Tr(��) + 2b[1 + a] Tr(� ∗ �)}. (70)

This is essentially just the sum of the ordinary second Chern class and the usual Lagrangian
four-form for the source-free Yang–Mills equations on M. This Lagrangian is a small
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generalization of the Yang–Mills Lagrangian computed in [4]. As a particular example
consider the case where the metric has Euclidean signature, b = (1 + a) and the gauge group
is SU(2). Then the Lagrangian corresponding to C is non-negative and attains its minimum
of zero when the generalized curvature

F = (1 + a)[(� + ∗�) + D(∗�)m] (71)

is zero, that is, when the ordinary curvature two-form � is anti-self dual.

5. Summary

The theory and formalism of generalized forms has been developed more fully than previously.
In particular, bases of minus one-form have been explored and used. The introduction and use
of canonical bases has enabled a number of results to be expressed with increased generality.
Previous studies of different representations of generalized forms, matrix groups of generalized
forms and generalized connections have been extended, and a number of examples have been
presented. In particular, the Cartan structure equations and Lagrangians for relativistic field
theories have been re-formulated within the context of the theory of generalized connections.
Topics for future investigation include the global formulation of generalize connections and the
development of further applications to physically interesting systems in different dimensions.
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Appendix. Representations of generalized forms

For calculational purposes the rules given in the previous sections suffice. However,
conceptually it is useful to be able to represent generalized forms and their exterior products
and derivatives purely in terms of ordinary forms. In this appendix two such representations
will be exhibited. First a representation of generalized forms in terms of matrix-valued
forms—matrices with entries taking values in ordinary forms—will be recalled. The exterior
product of generalized forms is represented by the matrix product of the matrix-valued forms
and the exterior derivative is represented by the action of nilpotent differential operators,
d(N), on the type N matrix-valued forms. Second an interesting representation of the exterior
derivative of a generalized p-form on M will be exhibited in terms of the ordinary exterior
derivative of an ordinary (p + N)-form, on an (n + N)-dimensional manifold M × IN , where
locally I ⊆ R can be taken to be an interval on the real line. This latter representation of the
exterior derivative was first noted by Paul-Andi Nagy in the case of N = 1 forms. Here this
representation will be explicitly constructed for N = 1 and N = 2 forms and it will be shown
how to generalize these constructions to forms of higher type.

In the first representation of a generalized form
p
a(N), introduced in [8], generalized forms

of type N > 1 are identified with 2N ×2N matrix-valued forms [
p
a(N)] ∈

p

M(N). The expressions
for these matrices are found by exploiting equation (2) and the definition

[
p
a(N)] =

(
[
p
a(N−1)] [

p+1
a (N−1)]

0 (−1)p[
p
a(N−1)]

)
. (A.1)
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The matrix representing the exterior product
p
a(N)

q

b(N), denoted by [
p
a(N)

q

b(N)], is equal to the

matrix product [
p
a(N)][

q

b(N)]. The matrix representation of the exterior derivative of
p
a(N), [d

p
a(N)],

is equal to d(N)[
p
a(N)], where the nilpotent operator d(N) :

p

M(N) →
p+1
M (N), is given by d(0) = d,

and for N > 0

d(N)[
p
a(N)] = S(N)d[

p
a(N)] + {K(N), [

p
a(N)]}p+1. (A.2)

Here the bracket of 2N × 2N matrices A and B is defined by {A,B}r = AB + (−1)rBA ,
and the 2N × 2N constant matrices S(N) and K(N) satisfy (S(N))

2 = 12N ×2N , (K(N))
2 = 0

and K(N)S(N) + S(N)K(N) = 0. The nilpotent operator d(N) must also satisfy the usual graded
Leibniz rule when acting on products. The following example contains these matrices when
N = 1 and N = 2 and corrects small errors in the discussion in [8].

Example A.1. The matrix representation, [d
p
a(2)], of the exterior derivative of

p
a(2) is equal to

d(2)[
p
a(2)] where, since dmi = εδi

1,

d(2)[
p
a(2)] = S(2)d[

p
a(2)] + {K(2), [

p
a(2)]}p+1;

S(2) =
(

S(1) 0
0 −S(1)

)
, K(2) =

(
K(1) 0

0 −K(1)

)
,

S(1) =
(

1 0
0 −1

)
, K(1) =

(
0 0
ε 0

)
.

(A.3)

The operator d(2) is nilpotent and satisfies the graded Leibniz rule

d(2)[
p
a(2)

q

b(2)] = d(2)[
p
a(2)][

q

b(2)] + (−1)p[
p
a(2)]d(2)[

q

b(2)]. (A.4)

It is a straightforward matter to compute the constant matrices K(N) and S(N), and hence d(N),
when N > 2. From equation (A.1) it follows that the 4 × 4 matrix representations of the type
N = 2 canonical basis minus one-forms {mi} are

[m1] =
(

[m] 02×2

02×2 −[m]

)
, where [m] =

(
0 1
0 0

)
,

[m2] =
(

02×2 12×2

02×2 02×2

)
,

(A.5)

and d(2)[m1] = ε14×4, d(2)[m2] = 0.

Example A.2. Let A be a type N = 1 (s × s matrix-valued) connection one-form with
curvature two-form F = dA + AA. Then in the representation of generalized forms being
considered here the standard formulae relating Lie algebra valued ordinary forms are replaced
by analogous formulae which include ordinary forms of higher degree. For example, here
the connection matrix [A] is a 2s × 2s matrix with entries ordinary one- and two-forms (as
in equation (A.1) but with s × s matrix valued ordinary forms inserted in the formula). The
corresponding curvature matrix, [F], is

[F] =d(1)[A] + [A][A], (A.6)

where

d(1)[A] =Sd[A] + K[A] + [A]K, (A.7)

and the 2s × 2s constant matrices S and K are given by

S =
(

1s×s 0
0 −1s×s

)
, K =

(
0 0

ε1s×s 0

)
. (A.8)
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This expression for the curvature generalizes the standard formula to include ordinary forms
of different degrees and can clearly be extended to the cases where N > 1.

In this first representation the exterior product of generalized forms is represented by the
ordinary exterior product, albeit applied to matrix-valued forms, while the ordinary exterior
derivative d is replaced by the differential operator d(N). In the second representation of type
N � 1 generalized forms to be discussed in this appendix, the ordinary exterior derivative is
retained, albeit applied to ordinary (p + N)-forms defined on manifolds of dimensions n + N .
While the exterior product of generalized p-forms is not reproduced by the ordinary exterior
products of these (p + N)-forms it is still useful to have this representation of the exterior
derivative in, for example, the exploration of integrals and Stokes theorem for generalized
forms.

Consider first generalized forms of type N = 1. Let
p
a(1) = p

α +
p+1
α m be a type N = 1

generalized p-form on M. Then on M × I where I is an interval on the line with coordinate y,
define the ordinary (p + 1)-form

p+1
α (1) ≡ p

α dy + yεp+1
α . (A.9)

Comparing the exterior derivatives of
p
a(1) and α(1),

d
p
a(1) = [d

p
α + (−1)p+1ε

p+1
α ] + d

p+1
α m,

d
p+1
α (1) = [d

p
α + (−1)p+1ε

p+1
α ] dy + yε d

p+1
α ,

(A.10)

it is clear that the association of
p
a(1) with

p+1
α (1) is identical to the association of d

p
a(1) with

d
p+1
α (1). This is the observation of Paul-Andi Nagy. From this correspondence it follows that

p
a(1) is closed if and only if

p+1
α (1) is closed. When ε = 1,

p+1
α (1) is closed if and only if it is exact;

if d
p
a(1) = 0 then d

p+1
α (1) = 0 and it follows that

p
a(1) = (−1)pd(

p
αm) and

p+1
α (1) = (−1)pd(y

p
α).

Example A.3. A Beltrami vector field on Euclidean three-space, E3, is a vector field −→α which
is parallel or anti-parallel to its curl, that is curl −→α = σ −→α , where σ is a non-zero function.
This condition can be re-expressed in terms of the one-form α, corresponding to −→α via the
usual metric isomorphism, as the condition that dα = σ ∗ α, where ∗ denotes the Hodge
dual. This latter equality can be used to define Beltrami vector fields on any 3-manifold, with
metric, M3. Beltrami vector fields on E3 and other three-dimensional manifolds arise in many
physically interesting contexts such as fluid dynamics, magnetohydrodynamics and plasma
physics (see, for example, [14, 15]). On M3 consider the type N = 1 generalized one-form
a = α − σ ∗ αm with dm = 1. This generalized form is closed (and therefore exact) if and
only if α defines a Beltrami vector field −→α . Hence −→α is a Beltrami vector field on M3 if and

only if on M3 ×I the two-form
2
α(1) ≡ α dy−yσ ∗α is closed. When the metric has Euclidean

signature, and I does not contain y = 0, the non-zero form
2
α(1) is of maximal rank. In this

case any non-zero Beltrami vector field on M3 defines a symplectic structure on M3 × I .
A straightforward extension of the definition is suggested by this formulation of the

Beltrami condition in terms of generalized forms. For an n-dimensional manifold M with
metric, the dual, ∗α, of a p-form α is a (n − p)-form. Consider therefore the generalized
p-form on M, given by a = α − σ ∗ αm, where σ is a non-zero (2p + 1 − n)-form . The
generalized p-form a is closed if and only if α satisfies the ‘generalized Beltrami condition’,
dα + (−1)pσ ∗ α = 0. When n = 3, the two possible choices are p = 1 and p = 2. In the
second case, the latter condition, expressed in terms of dual pseudo-vector fields −→α and −→σ
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takes the form div( −→α ) + 〈 −→α ,−→σ 〉 = 0, where 〈 −→α ,−→σ 〉 denotes the metric inner product. This
is a restriction on −→α only when −→σ is assumed given.

Next consider forms of type N = 2. Let
p
a(2) = p

a(1) +
p+1
a (1)m2 where

p
a(1) = p

α +
p+1
α 1m1

and
p+1
a (1) = p+1

α 2 +
p+2
α m1 so that

p
a(2) = p

α +
p+1
α imi +

p+2
α m1m2. Then on M × I 2, with

coordinates y1, y2 on I 2, define the ordinary (p + 2)-form

p+2
α (2) ≡ p+1

α (1) dy2 +
p+2
α (1) ≡ (

p
α dy1 + (y1)ε

p+1
α 1)dy2 + (

p+1
α 2 dy1 + (y1)ε

p+2
α )

= p
α dy1 dy2 + (y1)ε

p+1
α 1 dy2 +

p+1
α 2 dy1 + (y1)ε

p+2
α . (A.11)

Here equation (2) and the above constructions for N = 1 forms have been used to construct
p+2
α (2). Comparing the exterior derivatives of

p
a, and α(2)

d
p
a = [d

p
α + (−1)p+1ε

p+1
α 1] + d

p+1
α 1m1 + [d

p
α2 + (−1)pε

p+2
α ]m2 + d

p+2
α m1m2,

d
p+2
α (2) = [d

p
α + (−1)p+1ε

p+1
α 1]dy1 dy2 + (y1)εd

p+1
α 1 dy2

+ [d
p+1
α 2 + (−1)pε

p+2
α ]dy1 + (y1)ε d

p+2
α ,

(A.12)

it is clear that the association of
p
a with

p+2
α (2) is identical to the association of d

p
a with d

p+2
α (2).

In addition,
p
a is closed if and only if

p+2
α (2) is closed. When ε = 1 both

p
a and

p+2
α (2) are

closed if and only if they are exact; when they are closed they are equal to the exact forms
p
a = (−1)pd[

p
αm1 − p+1

α 2m1m2] and α(2) = (−1)pd[y1 p
α dy2 − y1p+1

α 2].
For generalized forms of type N > 2 the analogous correspondence is between generalized

forms
p
a(N) = p

a(N−1) +
p+1
a (N−1)mN on M and ordinary (p + N)-forms on M × IN . With

coordinates y1, . . . , yN on IN ,
p
a(N) corresponds to

p+N
α (N) = p+N−1

α (N−1) dyN +
p+N
α (N−1),

where
p
a(N−1) and

p+1
a (N−1) respectively correspond to

p+N−1
α (N−1) and

p+N
α (N−1) on M × IN−1.

It should be noted that this representation depends on the choice of canonical basis.
The exterior product of two type N generalized forms, say a p- and a q-form, does not

correspond to the exterior product of the related (p + N)- and (q + N)-ordinary forms. The
product of the two generalized forms is a (p+q)-generalized form of type N and so corresponds
to a (p + q + N)-ordinary form. In fact the exterior product of the generalized forms can be

viewed as defining a new product for ordinary forms belonging to the subset {p+N
α (N)}.
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